
Pergamon 

TiiItrt& Vol. 41, No. i2, pp. 2033-2012, 1994 
Copyright e]3 1994 Elsovier .%kmx Ltd 

Printed in Great Brit& AI1 rights reserved 
0039-914iy94 $7.00 + 0.00 

~TENT~OMETRrC CHA~CTER~ZATI~N OF WEAK 
ACIDS BY MULTIPLE SAMPLE ADDITION-I. LINEAR 
EQUATIONS AND INTRINSIC PERFORMANCE OF THE 

METHOD 

CARLO MACC,~ and ARBEN MERKOCI* 

Department of Inorganic, Meta~lorg~nic and Analytical Chemistry, University of Padua, Via Marzolo i, 
L-351 3 1 Padova, Italy 

Summary-The suitability of linearized multiple ~rnp~~add~t~on for the ~~~~orne~~ c~~~r~~t~on 
of monoprotic weak acids is examined. Linear equations far the separate or simultaneous determination 
of the acidity constant and of the sample concentration by treatment of experimental data are introduced. 
The intrinsic performance of the method and the application range of the different equations are discussed 
with reference to the theoretical e%ct of measurement errors on the vaks of the quantities to be 
deie~ined. 

Titration with a standdrd solution of strong 
base is the method of choice for the characteriz- 
ation of a weak acid. ~onito~ng the titration 
progress by means of potentiometric measure- 
ments with a pH glass electrode allows the 
accomplishment of tasks of various complexity, 
from the simple quantitation of a single solute 
to the determination of the composition of 
multi-~mponent mixtures together with the 
acidity constants of polyfn~ctiona~ acids. Com- 
puter programs’” at various levels of sophisti- 
cation have been proposed, and are being 
continuously developed, in order to allow sys- 
tems of increasing complexity to be dealt with in 
agreement with the principles of statistical 
analysis of data. 

However, an examination of the literature 
reveals that, most commonly, experimental data 
are currently treated with simpler procedures, 
Very convenient compu~tional and graphical 
procedures for processing titration data are 
based on various forms of linear equations, 
obtained by rearranging the rigorous equation 
of the titration curve (representing the theoreti- 
cal dependence of measured pH on the added 
titrant volume) or an approximate form of it 
and employing auxiliary variables.4 The Gran 
function and the Gran plot are widely used, 
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mainly in their original approximate form,5 to 
locate the equivalence point; the rigorously lin- 
ear Gran-type function’ requires the knowledge 
of the acidity constant (the dissociation constant 
K,). Other linear equations* can be employed 
when both the acidity constant and the concen- 
tration are unknown (this approach is frequent 
for the ~haracte~zation of po~yfun~tional acids 
with several equivalent acidic func~onal 
groups).f 

Most of these methods, because of the nature 
of the relevant equations,4 do not fulfill one or 
more of the prerequisites (for instance, normal 
error dist~bution, un~rrelated variables) to be 
treated with ordinary linear least squares 
methods. However, they can still be useful for 
preliminary screening of data and also yield 
reliable results, if approp~ately used. Under- 
standing the underlying principles and knowl- 
edge of their optimal appli~~on range, of their 
~rfo~an~ in the presence of interferences, 
and of other limitations are necessary for this 
purpose. Linearization methods of potentiomet- 
ric titrations for the quantitation of monoprotic 
weak acids have been recently reviewed,4 with 
the purpose of giving some general hints about 
their correct application. 

Potentiometric methods not requiring ti- 
tration with a base, like sample addition or 
sample dilution, are seldom used, For instance, 
pH measurements of sample solutions at a 
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single known ~on~ntratio~ of %&& acid are 
sometime employed to calculate lu, for class& 
cation of the acid strength of series of similar 
substances. 

In a previous paper,8 it has been shown that 
multiple addition of a standard solution of 
a weak acid to an unknown solution of the 
same acid, alone or in mixture with the 
~~j~gate base, can serve for the same purposes 
as the titration with a strong base, Linear 
g~u~~i~~~ for computational or graphical 
treatment of ~~pe~rne~t~ data have been 
introd~~d and discussed. However, the need 
of a standard solution of the de~~~~nd sets 
some limit to the practical convenient of the 
method. 

in this paper we wih discuss a much more 
convenient app~i~tion of the same p~n~iple, 
i.e. multiple addition of unknown sample, which 
can be described as a ‘titration ~thout 
&rant”. measured volumes of the sample sol- 
ution, containing & single weak acid at concen- 
tration C, are added stepwise to a known 
volume V” of water (the ~ons~~~y of ionic 
strength being an important prerequisite for 
obtaining easily rna~a~b~~ data, an aqueous 
solution of inert electrolyte is preferable). In 
order to obtain either the ~o~~ntra~o~ C or the 
acidity instant of the sample acid, K8 $ or both, 
the experimental variabies fr (the to&I vohune 
of sample added in ~~espo~den~~ of each step) 
and w+] (the ~~~~~i~g hydrous ion 
~on~~tration rn~as~r~ by a calibrated glass 
electrode) can be processed by ~rn~ata~ona~ 
methods according to the basic equation de- 
scribing the th~o~~~~~ relation between these 
q~~n~~es. 

Al~e~a~~~Iy~ by using expressly defined 
admix variab& the basic equation can be 
rea~a~g~ to give linear equations which can 
be ~~venient~y used to obtain, either by 
~~c~iation or g~apbi~~~y~ the quantities sought 
for. Equations for lin~~za~on of muhiple ad- 
dition of a single rnono~~~ti~ weak acid are 
intrude and diced in this paper. The 
intrinsic ~~o~an~e of .the method and the 
app~i~tion range of the diffffe~t Iinear 
equations in dependence on the strength and on. 
the ~~~nt~~o~ of the sample acid are evafu- 
ated, by caiculating the theoretical &Feet of 
measu~ment errors on the results of simulated 
experiments. 

The effect of i~t~rfe~ng ~o~ta~na~ts and the 
practical performance of the method will be 
in~s~gat~ in a future paper. 

It is mainly matter of preference whether 
linear ~ua~ons are ob~ined indirectly, by re- 
arranging the basic equation relating the exper- 
imental variables Y and @I+] with the 
physi~~hemi~l parameters of the system inves- 
tigated, or by directly combining the equations 
of the mass balances of so&es and of the 
ei~tron~~tra~ty of the solution with the ex- 
pressions of the eq~~b~~ constants involved. 
The @an-type equation is particularly suitable 
as the starting point for the following talents 
both because of its concrete meaning, which 
supports its ~~~t~o~ and in~~~retatio~~* and 
because a general form for weak acid additions 
has been p~~ousIy i~~odu~d~ 

when a3 increas~g volume Y of a so~~t~o~ 
~ntain~~ the weak acid HA at ~n~~tration 
C is added stepwise to a vohmre Y” of solution 
containing the same acid at ~on~n~a~on 
C” 2 0, the doubt ~rno~~s) of weak acid in the 
sofutiun, C “Y” + CV, increases pro~~i~~ly 
to the added volume V(note that the same is not 
true for the ~on~ntra~on, unless ‘fr<< Y”). By 
expressing this coast in terms of its fictional 
relationship to the ex~~~nta~ variables, Y 
and [H”], equation (I) is obtained* 

= C”P” + CK (1) 

?his ~~a~~o~ defines an auxikary variable F 
which is necessarily a linear function of V, in 
analogy with the *rigorous Gran function’ for 
weak acid titration.’ App~i~tio~ of equation (1) 
to the dete~inatio~ of the ~nknow~ coneen- 
tration Co of a weak acid solution by multiple 
addition of a standard solution of the same acid 
at concentrator C has been discussed.8 

Equation (1) is, as stated ahove, only a par- 
tictdar form of the basic equation 
ffF,fM+]* VQ,Co,C,K;,,Kw)-O relating the 
ex~~rne~t~ variabt_ts V (the ~ntro~~~ vati- 
able) and mi] (the measured variable) to the 
~r~et~~ V’, C”, C, K8 and lu,. By using 
other auxiliary variabfes, other linear equations 
have been i~tr~u~~~ by which one or two of 
the above parameters can be calculated from the 
expe~me~t~l data. A more general equation has 
been also obtained that allows for the presence 
of the co~jngate weak base at ~o~~ntratio~ C,, 
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Table 1. Linear equations for the ~multan~us dete~nation of the acidity constant X; and of the sample concentration 
C of a weak monoprotic acid by multiple sample addition [H, equation (4)] 

Named after X Y c K. equation Y = (I + bX Nr. 

Hofstee” HIH+lIV HIV a -I/b 
Scatchardi2 

H/Y=C-H[H+yk;V 
HIV H[H+IIV -a/b -b 

Lineweaver and Burk13 
H[H+]IV=K,C-&H/V 

IH+l VIH t/a @lb VlJ! = l/C + [H”li&C 
n.n.4 VIH lH+l -b/a 

!kotP l/b ;,: 
[If+]= -&+K,CV/H :t:; 

l/lH+l V/HP+1 
Briggs and Stuehr” 

V/HP+]= l/K,C + l/C[H+] (12) 
VIH[H+l t/[H+1 b -l/a l/[H+] = -l/K, + CV/H[H+] (13) 

together with the weak acid at C”, in the 
measured solution.8 

The case presently of interest, not previously 
considered, is multiple addition of a sample 
containing the weak acid at concentration C to 
a known volume of water or of an aqueous 
solution of an inert electrolyte. By putting the 
initial concentration of weak acid in the 
measured solution, C “, equal to 0, equation (1) 
reduces to equation (2): 

F=(P+ v)([H+] 

or, 
- KJH+ IN + [H+ Iliu,) = Cv (2) 

where 

F = H(l + [H+]/&) = CV, (3) 

H = (VO + Y)([H+] - KJH”]). (4) 

With moderately weak acids at moderate 
dilution (pH < 5.5), K,,,/[H+] (=[OH’-1) is neg- 
ligible with respect to [H+]; therefore, equation 
(2) can, in most instances, be reduced to the 
approximate form 

F=(V”-t- l’)[H+](l+[H+]/K,)=CV. (5) 

Equations (2)--(S) can be used, in principle, 
for the determination of the sample concen- 
tration C. In order to calculate the value of F for 
each sample addition, i.e. for every pair of 
experimental values of Y and [H+], V” must be 
measured and K, must be known. Moreover, the 
glass electrode must be calibrated to measure 
the hydronium ion concentration [H+] instead 
of PH. *GV It is seen that F is proportional to V 
with C as the coefficient. Therefore, the un- 
known concentration of the added sample, C, is 
obtained either graphically from the slope of the 
plot of F = Y against I/ = X, or by least-squares 
adjustment of the coefficient of the equation 
Y=CX. 

Other &near equations 

Equations (2)-(5) can be used as such for 
calculating the sample concentration only when 
the value of KS is known. However, they can be 

rearranged to give equations having a different 
scope or a wider one. For instance, to calculate 
Ka when C is known equation (3) can be written 
as 

H[H+]=K,(CV-H), (6) 

or, by defining the auxiliary variables 
X=CV-H and Y=H[H+], Y=&X. 
Therefore, equation (6) yields the acidity con- 
stant as the graphical or least-squares slope of 
the transformed experimental data. 

It can be observed that an equation equival- 
ent to equation (a), for instance equation (7), 

K, = 
@+I2 

cv (7) 

(P+ V) - [Ii+] 

(valid at pH < 5.5) is used when & is calculated 
(in substance, as the ratio K, = Y/X) from a 
single measurement of pH. 

When both C and K, are unknown, equation 
(2) can be employed to obtain these parameters 
with the usual computational methods.2’0 Alter- 
natively, by defining other suitable auxiliary 
variables X and Y that can be calculated for 
each pair of experimental data V and @+I, it 
is possible to rearrange equation (2) to obtain 
six different linear equations of the form 
Y = a + bX. For each type of equation, the 
auxiliary variables X and Y have different defi- 
nitions, and the linear parameters a and b are 
different combinations of C and K,. Therefore, 
C and K;, can be obtained by numerical or 
graphical linear fit of the values of X and Y 
calculated from experimental data. These 
equations are collected in Table 1. Each 
equation is here named after the author of a 
linear equation formerly introduced for differ- 
ent purposes (for instance, for complexometric’ 
or acid-base’ titrations) that shows the same 
relationships between the linear parameters a 
and b and the sought after quantities C and K, 
(4th and 5th columns of Table l).i’-‘s It should 
be noted that equations (9), (1 l), (13) are the 
same as equations (g), (lo), (12) respectively, 
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with interchanged coordinates. The variables X 
and Y of all the equations above are inter-re- 
lated, because their expressions contain the 
same ex~rimental variables Vand [H+]. There- 
fore, simple least-squares linearization is unsuit- 
able in principle; however, it is commonly used 
to work out titration data with analogous linear 
functions, and is claimed to give reliable values 
of the unknown titration parameters when the 
precision of experimental data is good.16 

DISCUSSION 

The linear e~~~t~on for the deter~i~~ti~~ of 
acidity constant with known sample concentration 

A simple evaluation of the stability of the 
different linear equations for the determination 
of the acidity constant, either alone [equations 
(6) and (7)] or together with the sample concen- 
tration [equations (Q--o--(3)], has been made by 
investigating the effect of measurement errors 
on the relevant plots and on the resulting values 
of the parameter(s) sought. Errors of the 
measured variable, the hydronium ion concen- 
tration [H+ 1, and of the controlled variable, the 
added volume V, have been considered separ- 
ately. 

Exact values of hydronium ion concentration, 
[H+ 1, have been calculated” theoretically for 
several simulated experiments, each one consist- 
ing of a series of equal additions of weak acid 
with given acidity constant K, and concen- 
tration C (typically, 10 additions of 1 ml of 
sample to 100 ml of supporting electrolyte). 
Calculations were made for different values of 
K, and for different ranges of values of the ratio 
C,,jKa, where C,, = CV/(V’ + V) is the total 
concentration of weak acid in the measured 
solution after each addition. 

For the evaluation of the separate determi- 
nation of the acidity constant with equation (6), 
the deviation from the ideal behavior caused by 
error in [H+ ] has been investigated by calculat- 
ing the auxiliary variables X = 0’ - H and 
Y = H[H+] both for the exact values of [H+] 
and for pairs of corresponding values 
(1 zt 6 )fH+ 1, that is, for hydronium ion concen- 
tration affected by systematic relative error &S 
(typically + 4%, as due to a systematic absolute 
error of + 1 mV in the measured e.m.f.). 

Representative results are shown in Fig. 1, 
where the plot of equation (6) with exact data 
is compared with plots of corresponding points 
affected by systematic errors in [H+]. For better 
comparison, reduced coordinates have been 

1 .o 

0.5 

0.0 

0.0 0.5 t.0 

Xg! 

Fig. 1. Plot of equation (6) with synthetic data X = CV - H, 
Y = H [H + ] [H, see equation (4)] calculated for 10 additions 
of weak acid sample, pK, = 4; V0 = 100 ml, Vi = i ml, 
i = I + 10. 0, c=0.001&4 (C,,/K~~O.l-+ 1); v, 
C = O.OlM (C,,/Ka x 1 t 10). Points on line A, calculated 
from theoretical values of [H+]; upper points, calculated 
with 4% error in [H+]; lower points, with -4% error in 
[H+]. Reduced auxiliary variables are Xf = Xi/X,, and 
Y i = Yi/ Y,, , where X,, and Y,, are the exact values for the 
last point of the same simulated experiment. Lines B, B’, C, 

c’ are least-squares straight lines. 

used; for any i-th point, X; = X,/X,, has been 
plotted as the abscissa and Y; = YJY,, as the 
ordinate, where X,, and Y,, are the exact values 
at the maximum added volume of each exper- 
iment. Consequently, the straight line represent- 
ing equation (6) for the exact values of [H+ 1, 
line A, is the same for all the simulated exper- 
iments, with only a different dist~bution of ail 
points but the last one. Synthetic data for 
C,,/rU, * 0.1 + 1 (circles and inte~olated 
straight lines B, B’) and for C,,/K, x 1 + 10 
(triangles and lines C, C’) are represented. Plots 
affected by error for C,,/K, x 10 + 100 or 
larger are very near to lines CL! and C’. 

It is seen that a systematic error in [H+ ] can 
have an appreciable effect on the slope of the 
plot. The slope decreases with increasing con- 
centration, becoming practically constant at 
higher concentrations. With pK, = 4, for sys- 
tematic i-4% and -4% errors in [H+] the 
deviation of the linearized plot and, therefore, 
of the calculated vafue of Ka was respectively 
14.7 and - 12.9% in the range C,,jKR x 0.1 + 1 
(lines B and B’, with correlation coefficient 
0.9996), 9.5 and -9.0% at C,,/K, x 1 + 10 
(lines C and C’, apparently through the origin, 
with correlation coefficient l,OOOO), 8.5 and 
-8.2% at C&,/K8 z lo-+ 100; with pKa = 7, the 
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0.0 0.2 0.4 0.6 0.8 1.0 

V/V,, 

Fig. 2. Relative error of K, calculated from theoretical 
values of [H+] with 4% (upper points) and -4% (lower 
points) systematic error by using equation (7). V” = 100 ml, 
v;=i ml, i=l+lo; 0, C =0.0&W, pK= = 4 
(C”,/ru, x 0.1 + I); 0, c = o.oM4, pK,=4 
(C&K, x 1 + 10); 0, c = O.lM, pK,=4 
(C&K, R 10 t Id,); 0, c =O.lM, pK==7 
(C&K, z IO” t 105). Solid lines: relative standard devi- 
ation of K, for 4% relative standard deviation of [H+] in the 

same C,,/g ranges as the nearest series of points. 

deviation was 8.2 and -7.8% at C,,/ 
K, = 104 + 10’. Changing the values of C and K, 
does not significantly alter the deviation of plots 
affected by error in given C&,/K= ranges. It is 
concluded that the effect of systematic errors on 
the determination of Ka is appreciably decreased 
by increasing the ratio C,, /K, over 1: 1, while a 
scarcely significant improvement is obtained by 
further increasing this ratio over 10: 1. 

The investigation of the effect of random 
errors would require a separate treatment. For 
simplicity, the pairs of plots corresponding to 
opposite systematic errors can be taken as fairly 
indicative of the effect of a constant uncertainty 
of the measured variable on the auxiliary vari- 
ables of the plot, and used for a qualitative 
comparison of the precision of the determi- 
nation of slope, i.e. of the acidity constant, in 
the different experimental ranges. By comparing 
these pairs of plots for different simulated exper- 
iments it is concluded that, in order to obtain 
optimal accuracy and precision in the determi- 
nation of acidity constant by multiple addition 
of sample at known concentration, it is sufficient 
to operate at Cn, 2 &. 

Similar conclusions are reached by consider- 
ation of equation (7). Each series of points 
in Fig. 2 corresponds to multiple addition in 

a different range of values of the ratio C,,/lu,. 
Abscissa is the ratio V/V,,, between the 
added volume at each point and the total 
volwne added at the end of each series of 
additions. Ordinate is the relative error 
.z (K,) = [(K,), - &J/K, of the determination of 
K,, where (K,), is the value of acidity constant 
calculated point by point with equation (7) for 
/J-l+] values affected by &4% error. Solid lines 
represent, for the same ranges of values of 
C,,,JK~, the relative standard deviation Q (K,) 
of the calculated value of the acidity constant, 
for a standard deviation of 4% of measured 
[H+]. It is seen that the theoretical lower limit 
of the relative systematic error and of the uncer- 
tainty of Ka (two times the systematic error and 
the uncertainty of [H+ ], respectively) is rapidly 
approached at CHAlKa > 1. 

The effect of error in the controlled exper- 
imental variable, the added sample volume, has 
been also investigated. For each simulated ex- 
periment, the hydronium ion concentration, 
[H+ 1, has been calculated for volumes affected 
by given errors. Either constant relative error or 
constant absolute error in I/ (total volume 
added after each addition step) have been as- 
sumed. The auxiliary variables X = Ck’ -H 
and Y = H m+ f of equation (6) have been 
calculated for these values of [H’ ] by using the 
nominal values of V. 

Constant relative error in volume is brought 
about, for instance, by a caIibration error of the 
volumetric apparatus by which sample ad- 
ditions are made. A + 1% or - 1% error (a very 
large value for this kind of error) has been seen 
to cause an error of K, of opposite sign and 
having approximately the same magnitude, but 
in the lower range of the ratio C&,/K, (i.e. 
0.1 +- 1) where it is appreciably larger. Deviation 
from linearity is so small as to be inappreciable 
in practice; the interpolated straight line appar- 
ently goes through the origin as required by 
equation (6). 

Constant absolute error in volume can be 
relatively more important, particularly when 
small volumes are measured for addition. Nega- 
tive error of this kind can be caused, for in- 
stance, by the presence of an air bubble in the 
capillary tip of the delivery tubing of the dis- 
pensing microburette. However, it has been seen 
that errors of this kind do not affect the determi- 
nation of acidity constant with equation (6). In 
our simulated experiments, a volume error of 
- 10% in the first of 10 identical sample ali- 
quots produced a very small variation of the 
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0.0 

0.0 0.5 1.0 

X' 
Fig. 3. Normalized plot of equation (6) with constant 
absolute error in volume. 0, p& =4, C -0.OOliU 
(Cr.&q w 0.1 i 1); IJ, c = O.lM (C,/& W 10 + 102); 
other data and no~~~tion as Fig. 1. Solid line, correct 
function without volume error; upper lines, values of [H+] 
calculated for V = Vi + 0.1 V,; tower lines, values of [H+ ] 

calculated for V = V, - 0.1 V, . 

slope of equation (6), while si~~ntiy displac- 
ing the intercept Y(X = 0) towards negative 
values. Although deviation increases with 
decreasing the Cu,,/K, ratio (Fig. 3), the error 
in K, is only -0.2% in the range C,,/lu, 
= 0.1 + I. Also in this instance, the pairs of 
plots in Fig. 3 corresponding to opposite sys- 
tematic errors can be taken as indicative of the 
effect of the absolute precision of the controlled 
variable on the precision of K,. It is concluded 
that the dete~ination of -lu, is not seriously 
affected by systematic or random volume errors. 

Finally, the effect of the use of a wrong 
con~n~ation value in calculations has been 
considered. The synthetic data [H’] against V 
for series of equal additions of weak acid have 
been used to calculate the auxiliary variable 
X = CV - H of equation (6) after affecting C 
with a given relative error. The effect of error in 
C is found to be much more dependent on the 
ratio C,,/& than on the single values of these 
two quantities. Even with large error in C, for 
instance *IO%, apparently linear plots are 
obtained. However, the slope is not really inde- 
pendent of the C,,/K, ratio; indeed, deviations 
are larger at larger relative dilution. For in- 
stance, for a rf: 1% error in C, the relative error 
in K, is practically identical with it at 
C,,/rU, > 100, but is f 1.3% in the range 
C,,/& s 1 + 10 and increases to f2.5% in the 
range C,, /KS * 0.1 + 1. 

The linear equations for simultaneous determi- 
~t~on of acidity con~t~t and sample concen- 
tration 

The synthetic data [H+] and (I f S)[rr+] 
against V for series of equal additions of weak 
acid with given acidity constant K, and concen- 
tration C have also been used to calculate the 
auxiliary variables X and Y of equations 
(Q-o-(3). Representative results are plotted in 
Figs 4-7. 

Equation (g), normalized to the form 
Y’=l+X’ by putting X;=XJCK~ and 
Yl = Yi/C, is plotted in Fig. 4 for four 
series of synthetic data corresponding to 
c,,/x, * 0.1 + 1, 14 10, lo+ l@, and 
lo4 + IO’, respectively. Data for (1 -t S )[H+], 
with S = 0.04, are also plotted; for simplicity, 
only the two extreme points of each simulated 
experiment are shown, because a systematic 
error displaces the plot without affecting 
linearity. Indeed, the effect of systematic error 
& 6 pi] on the slope (which yields lu,, 
see Table 1) and on the intercepts with ab- 
scissa, X ( Y = 0) = CK, , and with ordinate, 
Y (X = 0) = C, is constant, independently of the 
concentration range. Both the values of Ka and 
of C obtained by linear extrapolation of points 
with error are affected by a relative error equal 
to the error 6 of the ‘measured’ variable (+4 
and -4% for the upper and the lower plots of 
Fig. 4, respectively). However, the points of 
experiments at C,,/& ratio higher than 10 are 

1.0 - 

Y; 
0.5 - 

0.0 I I 
. p 

1 

0.0 0.5 1.0 

x; 
Fig. 4. Normalized plots of the Hofstee-type function, 
~uation (8). Normalized auxiliary variables X: = Xi/C and 
Y; = Y&K, were calculated from synthetic values of 
{l +S)m+] with 6 =0.04 (upper lines), 0, and -0.04 
(lower lines). Symbols as Fig. 2. As X’ increases, Y’ 

decreases with actual weak acid concentration Cu.,. 
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1.0 

Y' 

0.5 

0.0 

0.0 0.5 1.0 1.5 

X’ 

Fig. 5. Precision of the parameters of equation (8) in 
different C,,,,/K, ranges compared by extrapolating straight 
(dashed) lines through each pair of extreme points affected 
by opposite error of each series of synthetic data of Fig, 4. 

The solid line is the exact Hofstee-type equation. 

more and more compressed towards X’ = 1, 
Y’ = 0 (while points of experiments at ratio 
smaller than 0.1, not shown, are compressed 
towards X’ = 0, Y’ = 1); therefore, the effect of 
random errors on the uncertainty of the exper- 
imental linear parameters and of the quantities 
drawn from them must be expected to depend 
heavily on the ratio C,,/i&. 

A rather nai’ve approach to the evaluation of 
this effect, valid for mere comparison but effec- 
tive and having a great visual impact, is intro- 
duced in Fig. 5. A straight line is interpolated 
through two points, calculated for opposite 
(positive and negative, respectively) values of 
error, at the beginning and at the end, respect- 
ively, of a simulated experiment. A second 
straight line is interpolated through the corre- 
sponding points calculated with inverted (nega- 
tive and positive, respectively) values of error. 
Allowance made for the dramatic exaggeration, 
the span of the parameters of each pair of 
straight lines is sufficiently indicative for a com- 
parison of the precision attainable in different 
C,, /K, ranges. 

It is seen that the smallest span of slope (and, 
therefore, the smallest relative uncertainty of 
the calculated value of K,) occurs at 
C&K, M 0.1 + 1 and 1 + 10, it being approxi- 
mately the same in both ranges; the un~rtainty 
increases more and more both with increasing 
and (not shown) with decreasing this ratio. It is 
concluded that measurements restricted to 
C,.,,/li;, ratios much larger than 10 or smaller 

than 0.1 make the dete~ination of the acidity 
constant by linearized multiple sample addition 
of sample at unknown concentration (i.e. the 
simultaneous determination of acidity constant 
and con~nt~tion) very uncertain and eventu- 
ally unsuitable. 

In contrast, the span of intercept with ordi- 
nate (and, therefore, of calculated value of C) 
decreases by decreasing the C&J& ratio. 
This finding is in agreement with the trivial 
consideration that at increasing dilution all 
acids behave as strong or nearly so; by conse- 
quence, the concentration of hydronium ion, 
losing its dependence on acidity constant, ap- 
proaches the concentration of solute. The pre- 
cision of the sample concentration improves to 
the detriment of the precision of the acidity 
constant. 

The span of values of X ( Y = 0) = C,, /K& is 
indicative of the un~rt~nty of the determi- 
nation of the product of the two unknown 
quantities; in Fig. 5, it is almost constant for 
CBA/K8 > 1, but increases at lower values of the 
ratio. This finding is in agreement with the 
considerations above and also with the discus- 
sion of equation (6): indeed, if concentration is 
known, the whole uncertainty applies to the 
other quantity of the ratio. 

Similar conclusion are drawn for the other 
linear functions, like Lineweaver-Burk-type 
(equation 10) and Scott-type (equation 12) func- 
tions plotted in Figs 6 and 7, respectively. It is 
also interesting to observe that with equation 
(12) (see Fig. 7) Y is more inclined to be affected 
by measurement errors than X; with equation 
(10) (Fig. 6) both variables are about equally 
affected; with equation (8) (Fig. 4), at lower 
concentration (smaller X) Y is much more 
affected than X, while the opposite applies at 
higher concentration. 

The auxiliary variables X and Y of equations 
(8)-(13) have been also calculated for simulated 
experiments with V affected by systematic error. 
The effect of a reasonably large constant relative 
error is moderate. For instance, with equation 
(8) (the Hofstee-type function) a - 1% system- 
atic error in the added volume yields errors in 
Ka and C that increase regularly from -0.3% 
and +l%, respectively, in the range 
C,,/Ka cas 0.1 + 1 to - 1.3% and f2.2% in the 
range Cu,/K z 10’ + 10’; deviations from 
linearity are inappreciable. Therefore, a 
moderately small error of this kind does not 
impair the determination of K, with samples of 
unknown C. 
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Fig. 6. Normalized plots of the Lineweaver and Burk-type 
function, equation (10). Normalized auxiliary variables 
Xi = X,/K, and Yi = YiC were calculated from synthetic 
values of (1 + &)[H+] with 6 = 0.04 (upper lines), 0, and 
-0.04 (lower lines). Symbols as Fig. 2. 0, Scale reduced 100 
times. Both X’ and Y’ increase with actual weak acid 

concentration. 
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Fig. 7. Normalized plots of the Scott-type function, 
equation (12). Normalized auxiliary variables Xi = Xi& 
and Yf = Y&3& were calculated from synthetic values of 
(1 + s)[H+] with 6 =0.04 (upper lines), 0, and -0.04 
(lower lines). Symbols as Fig. 2. 0, Scale reduced 10 times. 
Both X’ and Y’ decrease with actual weak acid concen- 

tration. 

The effect of a systematic absolute error in 
volume is more serious (Figs 8 and 9). The 
deviation of equations (Q-(13) from the linear 
behavior becomes appreciable, and the error in 
the parameters can grow unacceptably large 
even for small volume error. With equation (!I), 
an error in the first sample aliquot added 
corresponding to - 1% of its volume (which at 
the end of the series of 10 additions reduces to 
a 0.1% error of total volume added, the 
controlled variable) brings about errors 
in K, and C that are, respectively, 2.7 and 
-1.0% in the range C,,/& x0.1 + 1, 2.5 
and -1.8% in the range C,,jK~x 1 + 10, 5.1 
and -4.4% in the range CH,/Ka x lo-+ lo’, 
14 and - 12% in the range C,,/& x lo2 + 103. 
Dramati~lly large deviations are shown in Figs 
8 and 9 for an absolute error corresponding to 
10% of the first sample aliquot. 

The linear rigorous G-an-type equation for deter- 
mination of sample concentration 

The previous discussion is focused on the use 
of multiple sample addition for the determi- 
nation of the acidity constant. The equation 
from which all the other equations have been 
drawn, equation (2), is discussed last, because 
the determination of the sample concentration is 
possibly the less appealing application of the 
multiple sample-addition method. The Gran- 
type function for multiple sample-addition, 
equation (2) (or equation 5), always requires 

1.0 - 

r; 0.5 - 

0.0 +. ! , 

0.0 0.5 1 .o 

x; 
Fig. 8. Normalized plots of the Hofstee-type function, 
equation (8), with constant absolute error in volume. Sym- 
bols, data and normalization as Fig. 4. Solid line, correct 
function without volume error; dotted lines, values of [H+] 
calculated for V = V, -0.01 P’,; dashed lines, [H+] calcu- 

lated for V= Vi-O.lY,. 
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It can be concluded that the accuracy with 
which the values of acidity constants in the 
experimental conditions are usually known is 
scarcely sufficient for satisfactory determination 
of concentration. A separate accurate determi- 
nation of Ka can be worthwhile only with repeti- 
tive samples. 

Fig. 9. Normalized plots of the Scott-type function, 
equation (S), with constant absolute error in volume. Sym- 
bols, data and normalization as Fig. 4. Solid line, correct 
function without volume error; dotted lines, values of w+] 
calculated for Y = Vi - 0.01 V,; dashed lines, [H+] calcu- 

CONCLUSIONS 

lated for V = Vj-0.1 V,. 0, Scale reduced IO times. 

careful electrode calibration and knowledge of 
the acidity constant. In contrast, the Gran func- 
tion for titration of weak acid with strong base 
can be used, in most instances, in the approxi- 
mate form (the original one),’ which simply 
requires the value of the slope factor of the 
electrode; only for titration of moderately 
strong acids is it necessary to resort to the 
rigorous equation which requires both cali- 
bration and Ka.18 Even in this instance, it is 
much less prone to errors due to inaccurate 
values of K, than equation (2). Indeed, the Gran 
function for titration yields the sample concen- 
tration from the equivalence volume extrapo- 
lated as the intercept X( Y = 0); in contrast, 
equation (2) yields the sample concentration 
from the slope, which is much more affected by 
errors in K, than the intercept. 

The above discussion suggests that ‘titration- 
without-titrant’ by multiple sample addition can 
compete with titration with strong base, or 
supplement it, for the characterization of weak 
acid samples. The intrinsic performance of this 
procedure and the optimal conditions for its 
application depend on the values of the analyti- 
cal parameters of the sample, acidity constant 
and concentration of the acid, and on which of 
these must be determined. 

The variety of samples and of conditions 
where the method is applicable is larger when 
only the acidity constant is wanted, the sample 
concentration being known. For optimal re- 
sults, the relevant linear equation (6) requires in 
principle only that the stoicheiometric concen- 
tration of acid in the solution where the hydro- 
nium ion concentration is measured is larger 
than the acidity constant. This prerequisite ex- 
cludes only relatively strong acids. A sufficiently 
high concentration of the sample used for the 
additions is generally advantageous. 

The synthetic data [H+] against V for series When both the sample concentration and the 
of equal additions of weak acid with given acidity constant are unknown, the range of 
acidity constant K8 and concentration C have conditions allowing optimal results with 
been used to calculate the auxiliary variable F of equations (8)-(13) is different, it also being 
equation (2) with K, values affected by error narrower; indeed, the ratio between the total 
f AK,. Also the effect of the error in K, is found acid concentration in the measured solution and 
to be much more dependent on the ratio C,,/K, the acidity constant must preferably be higher 
than on the single values of these two quantities. than 0.1 and lower than 10. In this range, the 

If the error in K,, is moderate, for instance 
f 10% (corresponding approximately to 
pKa f 0.05), the variation of slope is barely 
appreciable within the range C,,/Ka of a 
single simulated experiment, and an apparently 
linear plot is obtained. However, the slope is 
not really constant. Consequently, the devia- 
tion of the mean slope of error plots and, 
therefore, the error in C, depends on the 
Cn,/K, range, it being smaller at smaller 
Cn,/K, values. For instance, the relative error 
in C is AC/C * 0.4 AK,{K, in the range 
Cu,/K,xO.l + 1, AC/C x0.8 AK,lK, in the 
range C&K, s-a 1 + 10, and approaches 
AC/C = AKafKa at higher CH,jKa ratios. 
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adverse effect of errors in either experimental 
variable are expected to be smaller. In principle, 
moderately weak acids are favored. 

Finally, multiple sample addition cannot be 
safely recommended as a general method for the 
separate determination of the sample concen- 
tration using equation (2) by relying on litera- 
ture values of the acidity constants. It is 
expected that acidic or basic interfering sub- 
stances, inevitably present in real experiments, 
alter more or less the intrinsic performance of 
the method and set some other limits to its 
application. The performance of the method in 
the presence of possible interferences and its 
experimental validation are the subject of a 
further paper. 
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